Silurian (Llandovery) downdropping of the western margin of North America

Geology ◽  
1975 ◽  
Vol 3 (6) ◽  
pp. 331 ◽  
Author(s):  
J. G. Johnson ◽  
E. C. Potter
Keyword(s):  
1983 ◽  
Vol 20 (9) ◽  
pp. 1389-1408 ◽  
Author(s):  
Philippe Erdmer ◽  
Herwart Helmstaedt

Eclogite occurring in central Yukon, at Faro and near Last Peak, as lenses interleaved with muscovite–quartz blastomylonite has the chemical and field characteristics of group C rocks. From sigmoidal inclusion trails in garnet, from geothermometry and geobarometry, and from mineral parageneses, the eclogite is inferred to have a crustal protolith and to have followed a hysteretic, subduction-cycle P–T trajectory. Transformation of basic igneous rock into schist was followed by eclogite metamorphism during which pressure was at least 1000 MPa and temperature was between 600 and 700 °C. Uplifting involved passage through the stability field of glaucophane; the eclogite and its host rocks were then subjected to greenschist fades metamorphism and deformation, with temperature at approximately 400 °C. The rocks were emplaced as thrust sheets against or onto the western North American cratonal margin. The tectonic boundary ranges from nearly vertical, where it is outlined by a zone of steeply dipping mélange, to nearly horizontal beneath klippen of cataclastic rocks that lie on North American miogeoclinal strata. Together with occurrences of eclogite on strike, in Yukon, near Fairbanks (Alaska), and near Pinchi Lake (British Columbia), eclogite at Faro and near Last Peak implies that the Yukon Cataclastic Complex is a deeply eroded collision mélange that borders over 1000 km of the ancient continental margin.


1983 ◽  
Vol 99 (2-4) ◽  
pp. 231-239 ◽  
Author(s):  
G.W. Brass ◽  
B.W. Mattes ◽  
R.P. Reid ◽  
J.M. Whitman
Keyword(s):  

Zootaxa ◽  
2020 ◽  
Vol 4868 (4) ◽  
pp. 515-530
Author(s):  
WILL CHATFIELD-TAYLOR ◽  
JEFFREY A. COLE

Okanagana boweni sp. n. is described from the western margin of the Great Basin of North America. The new species is diagnosed from allopatric O. simulata Davis and sympatric O. utahensis Davis using morphological, bioacoustical, and molecular characters. The distribution of this new species coincides with the Walker Lane region that lies along the border of California and Nevada, USA. Based on geography, bioacoustics, morphology, and molecular phylogenetics, we hypothesize that O. boweni sp. n. is the allopatric sister species of O. simulata. 


2021 ◽  
Vol 7 (3) ◽  
pp. 355-389
Author(s):  
Grant W Lowey ◽  

<abstract> <p>Mesozoic convergence of the Wrangellia composite terrane with the western margin of North America resulted in the collapse of intervening flysch basins. One of these basins, the Jurassic-Cretaceous Gravina-Nuzotin belt, comprises from south to north, the Gravina sequence and Gravina belt in southeastern Alaska, the Dezadeash Formation in Yukon, and the Nutzotin Mountains sequence in eastern Alaska. Previous work shows that the Gravina sequence and Gravina belt were underthrust &gt; 20 km beneath the margin of North America in mid-Cretaceous time, culminating in amphibolite facies metamorphism. This tectonometamorphic scenario was subsequently applied to the entire Gravina-Nutzotin belt, despite any detailed studies pertaining to the tectonometamorphic evolution of the Dezadeash Formation. The present analysis of the Dezadeash Formation reveals that metamorphic mineral assemblages in sandstone and tuff document subgreenschist, high temperature zeolite facies metamorphism; Kübler indices of illite and Árkai indices of chlorite in mudstone record diagenetic to high anchizone metapelitic conditions; and the color of organic matter (i.e., the Thermal Alteration Index of palynomorphs and the Conodont Alteration Index) and pyrolysis of organic matter in mudstone and hemipelagite beds document thermal maturation at catagenesis to mesogenesis stages. Collectively, the mineralogic and organic thermal indicators in the Dezadeash Formation suggest that strata experienced maximum pressure-temperature conditions of 2.5 ± 0.5 kbar and 250 ± 25 ℃ in the Early Cretaceous. The inferred tectonometamorphic evolution of the Dezadeash Formation does not support the northern part of the Gravina-Nutzotin belt being underthrust &gt; 20 km beneath the western margin of North America in mid-Cretaceous time, thus contrasting sharply with the Gravina sequence and Gravina belt in the southern part of the Gravina-Nutzotin belt. The diverse tectonometamorphic histories recorded by the southern and northern parts of the Gravina-Nutzotin belt may be a manifestation of oblique collision and diachronous south-to-north accretion of the Wrangellia composite terrane to North America.</p> </abstract>


1983 ◽  
Vol 20 (12) ◽  
pp. 1891-1913 ◽  
Author(s):  
D. A. Archibald ◽  
J. K. Glover ◽  
R. A. Price ◽  
E. Farrar ◽  
D. M. Carmichael

K–Ar dates and U–Pb zircon dates define three periods of igneous activity in the southern Kootenay Arc: (1) emplacement of late-synkinematic to post-kinematic granodioritic plutons in mid-Jurassic time (170–165 Ma) accompanying amphibolite-facies regional metamorphism; (2) emplacement of post-kinematic granitic plutons in mid-Cretaceous time (~100 Ma); and (3) emplacement of small bodies of syenite in Eocene time (~50 Ma) in the western part of the area. Micas from mid-Jurassic plutons that yield the oldest K–Ar dates (158–166 Ma) also yield plateau-shaped 40Ar/39Ar age spectra. Age spectra for biotites younger than these but older than 125 Ma reflect thermal overprinting.In southeastern British Columbia, the Kootenay Arc marks the transition from the North American rocks of the Cordilleran miogeocline to the tectonic collage of allochthonous terranes that have been accreted to it.Deformation, metamorphism, and plutonism recorded in rocks of the southern Kootenay Arc commenced in mid-Jurassic time as a composite allochthonous terrane was accreted to and overlapped the western margin of North America. The geochronology and metamorphic geothermobarometry show that in less than 10 Ma between 166 and 156 Ma: (1) rocks as young as the late Proterozoic Windermere Supergroup and the early Paleozoic Lardeau Group were carried rapidly to depths of 20–24 km while being deformed and intruded by granitic rocks of a hornblende–biotite suite that were also being emplaced at a much shallower level in the overriding allochthonous terrane; and (2) the miogeoclinal rocks of the Windermere Supergroup in the southern Kootenay Arc were then uplifted by more than 7 km at an estimated rate of 2 mm/year, and thrust over the allochthonous terrane prior to being intruded by post-kinematic granitic rocks, many of which belong to the two-mica suite of mid-Cretaceous age..


2000 ◽  
Vol 74 (4) ◽  
pp. 741-744
Author(s):  
Thomas E. Yancey ◽  
Ellen E. Strong ◽  
Rex A. Hanger

Early permian strata in two displaced terranes of the McCloud belt contain a small biconic gastropod of distinctive appearance, Vesperispira humboldtiana new genus and species. This trochiform gastropod has a strongly oblique aperture with interrupted peristome, a small sinus on the peripheral margin of the shell, and lamellose shell. This gastropod is an easily recognized biogeographic indicator of the McCloud province biota, because of its lamellose ornamentation. Occurrence of this gastropod in strata of the Pine Forest Range of northwestern Nevada provides additional evidence for including rock units of the Black Rock terrane within the McCloud Belt, a grouping of several displaced terranes along the western margin of North America (Stevens et al., 1990) that contain fossil biotas rich in endemic species.


Sign in / Sign up

Export Citation Format

Share Document